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Bond-forming reactions that include cascade steps have gainedChart 1

increasing significance as versatile synthetic methdderein we radicaimetal o & &
report new cascade reactions, in which five-membered cyclic keto X hybrid reaction B g "
esters and amides are prepared starting from 4-alkenyl iodides via | +66 ———————— '-3?' “Nu
cyclizative multiple CO-trapping reactions (Chart 1). For this NuH = ROH, RNH e
purpose, we employed a radical/metal hybrid strategy that relies

upon both radical cascadésand palladium catalysis. Related ~S¢7€me 1 o

cascade tr_ansformatlons including a carbonylaﬁoycllzat_lor_r— A~~~ +CO + BuOH EtsN, CgHg OBu
carbonylation sequence have been reported by the Negishi §jroup, 12h < 7’ T
and the Grigg group,by taking advantage of the reactivity of 1a 0.1 M 40atm 5 equiv 220
palladium catalysts with properly substitutacbmaticandvinylic hvixenon, pyrex) <5%
halides® Unfortunately, palladium-catalyzed transformations are not 100 °C, p’d(Pph a4, (5 MoI%) NR
applicable to the wider class of aliphatic halides, due to the low hv, Pd(PPhs)s, (5 mol%) 61%
reactivity of sg-carbon-halogen bonds toward oxidative addition hv, Pd(PPhg)s, (5 mol%), DMAP (10 mol%) 82%

with Pd78 We believe that the present hybrid strategy provides a

viable solution to this problem. as the major products along with the doubly carbonylatdetto

We initially examined the possibility of applying atom transfer amides3 (runs 13-15). Although the formation of vicinal keto
carbonylatiofito the envisaged cascade reaction. When 4-pentenyl amides has many precedents in palladium-catalyzed double carbo-
iodide (La) was exposed to standard reaction conditions (irradiation nylation chemistry2 most of them are for aryl, benzyl, vinyl, and
with a xenon lamp through Pyrex under 40 atm of CO pressfire), allyl halides and we are aware of only two cases with respect to
the desired cyclic keto est@a was indeed formed, but the yield  alkyl halidest?ac
was only 5% (Scheme 1). It is conceivable that, unlike the case of = The cascade reactions that we have observed clearly result from
simple ester synthes?3the ionic termination reaction may not be  the interplay of two reactive species, radicals and organopalladium
efficient enough to shift the five equilibrium steps (homolysis, species. To determine whether the Pd(@)éystem would effect
carbonylation, cyclization, carbonylation, and iodine atom transfer) initiation of radical reactions in our systethwe examined the
to completion. Then, we examined the palladium-catalyzed carbo- atom-transfer cyclization of 1-ethyl-5-hexenyl iodide and found that
nylation of 1a under thermal conditions using Pd(RRhbut as the presence of Pd resulted in a much more efficient reaction and
anticipated, there was no reaction. Interestingly, however, when that the observed cis/trans ratio (72/28) of the product, 1-ethyl-2-
these two conditions, irradiation and treatment with Pd(0) catalyst, (iodomethyl)cyclopentane, was identical with that observed for a
are employed together, the desired keto e3tarvas obtained in a 1-methyl-5-hexenyl radical cyclizatiori.In addition, the observed
remarkable 61% yielé The tuning of the conditions by addition  stereochemical outcomes for the cyclizationslefand 1f (cis/
of 4-(dimethylamino)pyridine (DMAP) improved the yield up to  trans= 43/57 and 38/62, respectively) are identical to those obtained
82%. in the tin radical-mediated carbonylation of the same substfates,

As shown in Table 1, the present cyclizative double carbonylation providing support for the postulate that a 5-exo-trig acyl radical
sequence is applicable to a wide variety of 4-alkenyl iodides having cyclization of B leading toC does occur in the present reaction
sp*-carbor-iodine bonds. 4-Pentenydromide (1&) can also be  system (Scheme 2). On the other hand, the formation of esters,
used, but the yield oRa was rather modest. A spirocyclic keto  amides, and keto amides, should be considered to be the products
ester2c was formed froniLc. Secondary substratésl, 1e, 1f, and of acylpalladium intermediates. One possibility is that the acyl
1g also worked well to give the corresponding cyclic keto esters radical D, arising from the second carbonylation, undergoes
2d, 2e 2f, and 2g in good yields. The cyclizative double  coupling with Pd(l) to give an acylpalladium intermedi&gwhich
carbonylation ofLh and1i proceeded stereoselectively to give the may be the precursor for the final prod@¥ Mechanistic aspects
corresponding bicyclic keto estezh and 2i, whose pendant  of palladium-catalyzed single and double carbonylation of organic

methoxycarbonyl group was disposed on the convex face. halides have been extensively investigafe@n the basis of the
The cyclizative carbonylation, when performed in the presence arguments previously advanced by the Yamamoto group and in
of diethylamine, provided triply carbonylatedd-diketo amidest analogy to the corresponding reactions of double carbonylation of

benzyl chloride'®® we propose that (4-oxo-acyl)(carbamoyl)-

* - il . . .
mTSociagvggg;(afS?Jrgcsrj)gndence should be addressed. E-mail: U@ na||adium complexes would be formed in our system, serving as
T Osaka Prefecture University. the key precursors far-keto amidest via reductive elimination.
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run  substrate alcohol or amine  product yield” (ratio®)
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